Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Neurophysiol ; 131(3): 492-508, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38264784

RESUMEN

Spike timing-based representations of sensory information depend on embedded dynamical frameworks within neuronal networks that establish the rules of local computation and interareal communication. Here, we investigated the dynamical properties of olfactory bulb circuitry in mice of both sexes using microelectrode array recordings from slice and in vivo preparations. Neurochemical activation or optogenetic stimulation of sensory afferents evoked persistent gamma oscillations in the local field potential. These oscillations arose from slower, GABA(A) receptor-independent intracolumnar oscillators coupled by GABA(A)-ergic synapses into a faster, broadly coherent network oscillation. Consistent with the theoretical properties of coupled-oscillator networks, the spatial extent of zero-phase coherence was bounded in slices by the reduced density of lateral interactions. The intact in vivo network, however, exhibited long-range lateral interactions that suffice in simulation to enable zero-phase gamma coherence across the olfactory bulb. The timing of action potentials in a subset of principal neurons was phase-constrained with respect to evoked gamma oscillations. Coupled-oscillator dynamics in olfactory bulb thereby enable a common clock, robust to biological heterogeneities, that is capable of supporting gamma-band spike synchronization and phase coding across the ensemble of activated principal neurons.NEW & NOTEWORTHY Odor stimulation evokes rhythmic gamma oscillations in the field potential of the olfactory bulb, but the dynamical mechanisms governing these oscillations have remained unclear. Establishing these mechanisms is important as they determine the biophysical capacities of the bulbar circuit to, for example, maintain zero-phase coherence across a spatially extended network, or coordinate the timing of action potentials in principal neurons. These properties in turn constrain and suggest hypotheses of sensory coding.


Asunto(s)
Neuronas , Bulbo Olfatorio , Femenino , Masculino , Ratones , Animales , Bulbo Olfatorio/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Sinapsis/fisiología , Odorantes
2.
Appl Phys Lett ; 122(14): 143701, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37151852

RESUMEN

Correlative multimodal imaging is a useful approach to investigate complex structural relations in life sciences across multiple scales. For these experiments, sample preparation workflows that are compatible with multiple imaging techniques must be established. In one such implementation, a fluorescently labeled region of interest in a biological soft tissue sample can be imaged with light microscopy before staining the specimen with heavy metals, enabling follow-up higher resolution structural imaging at the targeted location, bringing context where it is required. Alternatively, or in addition to fluorescence imaging, other microscopy methods, such as synchrotron x-ray computed tomography with propagation-based phase contrast or serial blockface scanning electron microscopy, might also be applied. When combining imaging techniques across scales, it is common that a volumetric region of interest (ROI) needs to be carved from the total sample volume before high resolution imaging with a subsequent technique can be performed. In these situations, the overall success of the correlative workflow depends on the precise targeting of the ROI and the trimming of the sample down to a suitable dimension and geometry for downstream imaging. Here, we showcase the utility of a femtosecond laser (fs laser) device to prepare microscopic samples (1) of an optimized geometry for synchrotron x-ray tomography as well as (2) for volume electron microscopy applications and compatible with correlative multimodal imaging workflows that link both imaging modalities.

3.
J Neurosci Methods ; 381: 109705, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36096238

RESUMEN

The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs.


Asunto(s)
Neurociencias , Roedores , Crianza de Animales Domésticos/métodos , Bienestar del Animal , Animales , Alimentos , Ratones
4.
Dev Cell ; 57(16): 1957-1975.e9, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998585

RESUMEN

Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential.


Asunto(s)
Células-Madre Neurales , Animales , Diferenciación Celular , Epéndimo , Mamíferos , Ratones , Neuroglía , Médula Espinal
5.
Cell Rep Methods ; 2(6): 100240, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35784647

RESUMEN

Rigorously quantifying perceptual similarity is essential to link sensory stimuli to neural activity and to define the dimensionality of perceptual space, which is challenging for the chemical senses in particular. Nakayama, Gerkin, and Rinberg present an efficient delayed match-to-sample behavioral paradigm that promises to provide a metric for odor similarity.


Asunto(s)
Odorantes , Animales , Ratones
6.
Front Cell Dev Biol ; 10: 880696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756997

RESUMEN

Integrating physiology with structural insights of the same neuronal circuit provides a unique approach to understanding how the mammalian brain computes information. However, combining the techniques that provide both streams of data represents an experimental challenge. When studying glomerular column circuits in the mouse olfactory bulb, this approach involves e.g., recording the neuronal activity with in vivo 2-photon (2P) calcium imaging, retrieving the circuit structure with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT) and/or serial block-face scanning electron microscopy (SBEM) and correlating these datasets. Sample preparation and dataset correlation are two key bottlenecks in this correlative workflow. Here, we first quantify the occurrence of different artefacts when staining tissue slices with heavy metals to generate X-ray or electron contrast. We report improvements in the staining procedure, ultimately achieving perfect staining in ∼67% of the 0.6 mm thick olfactory bulb slices that were previously imaged in vivo with 2P. Secondly, we characterise the accuracy of the spatial correlation between functional and structural datasets. We demonstrate that direct, single-cell precise correlation between in vivo 2P and SXRT tissue volumes is possible and as reliable as correlating between 2P and SBEM. Altogether, these results pave the way for experiments that require retrieving physiology, circuit structure and synaptic signatures in targeted regions. These correlative function-structure studies will bring a more complete understanding of mammalian olfactory processing across spatial scales and time.

7.
World Neurosurg ; 164: e884-e898, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35623610

RESUMEN

OBJECTIVE: Invasive brain-computer interfaces (BCIs) require neurosurgical implantation, which confers a range of risks. Despite this situation, no studies have assessed the acceptability of invasive BCIs among the neurosurgical team. This study aims to establish baseline knowledge of BCIs within the neurosurgical team and identify attitudes toward different applications of invasive BCI. METHODS: A 2-stage cross-sectional international survey of the neurosurgical team (neurosurgeons, anesthetists, and operating room nurses) was conducted. Results from the first, qualitative, survey were used to guide the second-stage quantitative survey, which assessed acceptability of invasive BCI applications. Five-part Likert scales were used to collect quantitative data. Surveys were distributed internationally via social media and collaborators. RESULTS: A total of 108 qualitative responses were collected. Themes included the promise of BCIs positively affecting disease targets, concerns regarding stability, and an overall positive emotional reaction to BCI technology. The quantitative survey generated 538 responses from 32 countries. Baseline knowledge of BCI technology was poor, with 9% claiming to have a good or expert knowledge of BCIs. Acceptability of invasive BCI for rehabilitative purposes was >80%. Invasive BCI for augmentation in healthy populations divided opinion. CONCLUSIONS: The neurosurgical team's view of the acceptability of invasive BCI was divided across a range of indications. Some applications (e.g., stroke rehabilitation) were viewed as more appropriate than other applications (e.g., augmentation for military use). This range in views highlights the need for stakeholder consultation on acceptable use cases along with regulation and guidance to govern initial BCI implantations if patients are to realize the potential benefits.


Asunto(s)
Interfaces Cerebro-Computador , Rehabilitación de Accidente Cerebrovascular , Estudios Transversales , Electroencefalografía/métodos , Humanos , Encuestas y Cuestionarios
8.
Nat Commun ; 13(1): 2923, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614048

RESUMEN

Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues.


Asunto(s)
Imagenología Tridimensional , Sincrotrones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/ultraestructura , Imagen de Difusión por Resonancia Magnética , Ratones , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Microtomografía por Rayos X/métodos
9.
J Neurosci ; 42(21): 4278-4296, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35440491

RESUMEN

Odors are transported by turbulent air currents, creating complex temporal fluctuations in odor concentration that provide a potentially informative stimulus dimension. We have shown that mice are able to discriminate odor stimuli based on their temporal structure, indicating that information contained in the temporal structure of odor plumes can be extracted by the mouse olfactory system. Here, using in vivo extracellular and intracellular electrophysiological recordings, we show that mitral cells (MCs) and tufted cells (TCs) of the male C57BL/6 mouse olfactory bulb can encode the dominant temporal frequencies present in odor stimuli up to at least 20 Hz. A substantial population of cell-odor pairs showed significant coupling of their subthreshold membrane potential with the odor stimulus at both 2 Hz (29/70) and the suprasniff frequency 20 Hz (24/70). Furthermore, mitral/tufted cells (M/TCs) show differential coupling of their membrane potential to odor concentration fluctuations with tufted cells coupling more strongly for the 20 Hz stimulation. Frequency coupling was always observed to be invariant to odor identity, and M/TCs that coupled well to a mixture also coupled to at least one of the components of the mixture. Interestingly, pharmacological blocking of the inhibitory circuitry strongly modulated frequency coupling of cell-odor pairs at both 2 Hz (10/15) and 20 Hz (9/15). These results provide insight into how both cellular and circuit properties contribute to the encoding of temporal odor features in the mouse olfactory bulb.SIGNIFICANCE STATEMENT Odors in the natural environment have a strong temporal structure that can be extracted and used by mice in their behavior. Here, using in vivo extracellular and intracellular electrophysiological techniques, we show that the projection neurons in the olfactory bulb can encode and couple to the dominant frequency present in an odor stimulus. Furthermore, frequency coupling was observed to be differential between mitral and tufted cells and was odor invariant but strongly modulated by local inhibitory circuits. In summary, this study provides insight into how both cellular and circuit properties modulate encoding of odor temporal features in the mouse olfactory bulb.


Asunto(s)
Odorantes , Bulbo Olfatorio , Animales , Interneuronas , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Olfato/fisiología
10.
J Neural Eng ; 19(1)2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35108701

RESUMEN

Objective.Extracellular microelectrode techniques are the most widely used approach to interrogate neuronal populations. However, regardless of the manufacturing method used, damage to the vasculature and circuit function during probe insertion remains a concern. This issue can be mitigated by minimising the footprint of the probe used. Reducing the size of probes typically requires either a reduction in the number of channels present in the probe, or a reduction in the individual channel area. Both lead to less effective coupling between the probe and extracellular signals of interest.Approach.Here, we show that continuously drawn SiO2-insulated ultra-microelectrode fibres offer an attractive substrate to address these challenges. Individual fibres can be fabricated to >10 m continuous stretches and a selection of diameters below 30µm with low resistance (<100 Ω mm-1) continuously conductive metal core of <10µm and atomically flat smooth shank surfaces. To optimize the properties of the miniaturised electrode-tissue interface, we electrodeposit rough Au structures followed by ∼20 nm IrOx film resulting in the reduction of the interfacial impedance to <500 kΩ at 1 kHz.Main results. We demonstrate that these ultra-low impedance electrodes can record and stimulate both single and multi-unit activity with minimal tissue disturbance and exceptional signal-to-noise ratio in both superficial (∼40µm) and deep (∼6 mm) structures of the mouse brain. Further, we show that sensor modifications are stable and probe manufacturing is reproducible.Significance.Minimally perturbing bidirectional neural interfacing can reveal circuit function in the mammalian brainin vivo.


Asunto(s)
Encéfalo , Dióxido de Silicio , Animales , Encéfalo/fisiología , Impedancia Eléctrica , Electrodos Implantados , Ratones , Microelectrodos , Neuronas/fisiología
11.
PLoS Comput Biol ; 18(1): e1009808, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100264

RESUMEN

Sensory processing is hard because the variables of interest are encoded in spike trains in a relatively complex way. A major goal in studies of sensory processing is to understand how the brain extracts those variables. Here we revisit a common encoding model in which variables are encoded linearly. Although there are typically more variables than neurons, this problem is still solvable because only a small number of variables appear at any one time (sparse prior). However, previous solutions require all-to-all connectivity, inconsistent with the sparse connectivity seen in the brain. Here we propose an algorithm that provably reaches the MAP (maximum a posteriori) inference solution, but does so using sparse connectivity. Our algorithm is inspired by the circuit of the mouse olfactory bulb, but our approach is general enough to apply to other modalities. In addition, it should be possible to extend it to nonlinear encoding models.


Asunto(s)
Algoritmos , Células Receptoras Sensoriales/fisiología , Potenciales de Acción/fisiología , Animales , Ratones , Dinámicas no Lineales
12.
Elife ; 102021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34292150

RESUMEN

Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA in situ hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion, and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.


Asunto(s)
Interneuronas/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Factores de Transcripción/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN
13.
Nature ; 593(7860): 558-563, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953395

RESUMEN

Odours are transported in turbulent plumes, which result in rapid concentration fluctuations1,2 that contain rich information about the olfactory scenery, such as the composition and location of an odour source2-4. However, it is unclear whether the mammalian olfactory system can use the underlying temporal structure to extract information about the environment. Here we show that ten-millisecond odour pulse patterns produce distinct responses in olfactory receptor neurons. In operant conditioning experiments, mice discriminated temporal correlations of rapidly fluctuating odours at frequencies of up to 40 Hz. In imaging and electrophysiological recordings, such correlation information could be readily extracted from the activity of mitral and tufted cells-the output neurons of the olfactory bulb. Furthermore, temporal correlation of odour concentrations5 reliably predicted whether odorants emerged from the same or different sources in naturalistic environments with complex airflow. Experiments in which mice were trained on such tasks and probed using synthetic correlated stimuli at different frequencies suggest that mice can use the temporal structure of odours to extract information about space. Thus, the mammalian olfactory system has access to unexpectedly fast temporal features in odour stimuli. This endows animals with the capacity to overcome key behavioural challenges such as odour source separation5, figure-ground segregation6 and odour localization7 by extracting information about space from temporal odour dynamics.


Asunto(s)
Bulbo Olfatorio/citología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Movimientos del Aire , Animales , Conducta Animal , Condicionamiento Operante , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Odorantes , Técnicas de Placa-Clamp , Conducta Espacial , Factores de Tiempo
14.
Cell Tissue Res ; 383(1): 473-483, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33515294

RESUMEN

The sense of smell is an essential modality for many species, in particular nocturnal and crepuscular mammals, to gather information about their environment. Olfactory cues provide information over a large range of distances, allowing behaviours ranging from simple detection and recognition of objects, to tracking trails and navigating using odour plumes from afar. In this review, we discuss the features of the natural olfactory environment and provide a brief overview of how odour information can be sampled and might be represented and processed by the mammalian olfactory system. Finally, we discuss recent behavioural approaches that address how mammals extract spatial information from the environment in three different contexts: odour trail tracking, odour plume tracking and, more general, olfactory-guided navigation. Recent technological developments have seen the spatiotemporal aspect of mammalian olfaction gain significant attention, and we discuss both the promising aspects of rapidly developing paradigms and stimulus control technologies as well as their limitations. We conclude that, while still in its beginnings, research on the odour environment offers an entry point into understanding the mechanisms how mammals extract information about space.


Asunto(s)
Odorantes , Animales , Mamíferos
15.
Front Neurosci ; 14: 834, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848584

RESUMEN

Mammalian brains consist of 10s of millions to 100s of billions of neurons operating at millisecond time scales, of which current recording techniques only capture a tiny fraction. Recording techniques capable of sampling neural activity at high spatiotemporal resolution have been difficult to scale. The most intensively studied mammalian neuronal networks, such as the neocortex, show a layered architecture, where the optimal recording technology samples densely over large areas. However, the need for application-specific designs as well as the mismatch between the three-dimensional architecture of the brain and largely two-dimensional microfabrication techniques profoundly limits both neurophysiological research and neural prosthetics. Here, we discuss a novel strategy for scalable neuronal recording by combining bundles of glass-ensheathed microwires with large-scale amplifier arrays derived from high-density CMOS in vitro MEA systems or high-speed infrared cameras. High signal-to-noise ratio (<25 µV RMS noise floor, SNR up to 25) is achieved due to the high conductivity of core metals in glass-ensheathed microwires allowing for ultrathin metal cores (down to <1 µm) and negligible stray capacitance. Multi-step electrochemical modification of the tip enables ultra-low access impedance with minimal geometric area, which is largely independent of the core diameter. We show that the microwire size can be reduced to virtually eliminate damage to the blood-brain-barrier upon insertion and we demonstrate that microwire arrays can stably record single-unit activity. Combining microwire bundles and CMOS arrays allows for a highly scalable neuronal recording approach, linking the progress in electrical neuronal recordings to the rapid progress in silicon microfabrication. The modular design of the system allows for custom arrangement of recording sites. Our approach of employing bundles of minimally invasive, highly insulated and functionalized microwires to extend a two-dimensional CMOS architecture into the 3rd dimension can be translated to other CMOS arrays, such as electrical stimulation devices.

16.
Front Cell Neurosci ; 14: 220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765224

RESUMEN

For sensory systems of the brain, the dynamics of an animal's own sampling behavior has a direct consequence on ensuing computations. This is particularly the case for mammalian olfaction, where a rhythmic flow of air over the nasal epithelium entrains activity in olfactory system neurons in a phenomenon known as sniff-locking. Parameters of sniffing can, however, change drastically with brain states. Coupled to the fact that different observation methods have different kinetics, consensus on the sniff-locking properties of neurons is lacking. To address this, we investigated the sniff-related activity of olfactory sensory neurons (OSNs), as well as the principal neurons of the olfactory bulb (OB), using 2-photon calcium imaging and intracellular whole-cell patch-clamp recordings in vivo, both in anesthetized and awake mice. Our results indicate that OSNs and OB output neurons lock robustly to the sniff rhythm, but with a slight temporal shift between behavioral states. We also observed a slight delay between methods. Further, the divergent sniff-locking by tufted cells (TCs) and mitral cells (MCs) in the absence of odor can be used to determine the cell type reliably using a simple linear classifier. Using this classification on datasets where morphological identification is unavailable, we find that MCs use a wider range of temporal shifts to encode odors than previously thought, while TCs have a constrained timing of activation due to an early-onset hyperpolarization. We conclude that the sniff rhythm serves as a fundamental rhythm but its impact on odor encoding depends on cell type, and this difference is accentuated in awake mice.

17.
Sci Adv ; 6(12): eaay2789, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32219158

RESUMEN

Multi-channel electrical recordings of neural activity in the brain is an increasingly powerful method revealing new aspects of neural communication, computation, and prosthetics. However, while planar silicon-based CMOS devices in conventional electronics scale rapidly, neural interface devices have not kept pace. Here, we present a new strategy to interface silicon-based chips with three-dimensional microwire arrays, providing the link between rapidly-developing electronics and high density neural interfaces. The system consists of a bundle of microwires mated to large-scale microelectrode arrays, such as camera chips. This system has excellent recording performance, demonstrated via single unit and local-field potential recordings in isolated retina and in the motor cortex or striatum of awake moving mice. The modular design enables a variety of microwire types and sizes to be integrated with different types of pixel arrays, connecting the rapid progress of commercial multiplexing, digitisation and data acquisition hardware together with a three-dimensional neural interface.


Asunto(s)
Electrónica , Procedimientos Analíticos en Microchip , Neuronas/fisiología , Animales , Electrónica/instrumentación , Electrónica/métodos , Diseño de Equipo , Dispositivos Laboratorio en un Chip , Ratones , Procedimientos Analíticos en Microchip/métodos , Microelectrodos
18.
Methods Mol Biol ; 2050: 113-120, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31468485

RESUMEN

Targeted electroporation by using glass microelectrodes is a popular and versatile tool allowing for easy manipulation of single cells and cell ensembles in living tissue. Because of the highly focal distribution of the electric field, however, the range of reversible electroporation without causing irreversible damage is tight-especially when aiming for larger electroporation volumes. In this chapter, we describe the production of nanoengineered electroporation microelectrodes (NEMs), a practicable way to prepare glass microelectrodes providing a more even distribution around the tip of a pipette by using nanotechnological methods.


Asunto(s)
Electroporación/instrumentación , Transfección/instrumentación , Animales , Diseño de Equipo , Masculino , Ratones , Microelectrodos , Nanotecnología
19.
Brain Res ; 1734: 146540, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704081

RESUMEN

This article reviews the contributions of the English neurophysiologist, Charles Scott Sherrington [1857-1952], and his Australian PhD trainee and collaborator, John Carew Eccles [1903-1997], to the concept of central inhibition in the spinal cord and brain. Both were awarded Nobel Prizes; Sherrington in 1932 for "discoveries regarding the function of neurons," and Eccles in 1963 for "discoveries concerning the ionic mechanisms involved in excitation and inhibition in central portions of the nerve cell membrane." Both spoke about central inhibition at their Nobel Prize Award Ceremonies. The subsequent publications of their talks were entitled "Inhibition as a coordinative factor" and "The ionic mechanism of postsynaptic inhibition", respectively. Sherrington's work on central inhibition spanned 41 years (1893-1934), and for Eccles 49 years (1928-1977). Sherrington first studied central inhibition by observing hind limb muscle responses to electrical (peripheral nerve) and mechanical (muscle) stimulation. He used muscle length and force measurements until the early 1900s and electromyography in the late 1920s. Eccles used these techniques while working with Sherrington, but later employed extracellular microelectrode recording in the spinal cord followed in 1951 by intracellular recording from spinal motoneurons. This considerably advanced our understanding of central inhibition. Sherrington's health was poor during his retirement years but he nonetheless made a small number of largely humanities contributions up to 1951, one year before his death at the age of 94. In contrast, Eccles retained his health and vigor until 3 years before his death and published prolifically on many subjects during his 22 years of official retirement. His last neuroscience article appeared in 1994 when he was 91. Despite poor health he continued thinking about his life-long interest, the mind-brain problem, and was attempting to complete his autobiography in the last years of his life.


Asunto(s)
Personal de Laboratorio/historia , Inhibición Neural , Neurofisiología/historia , Médula Espinal , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Masculino , Inhibición Neural/fisiología , Médula Espinal/fisiología
20.
PLoS One ; 14(3): e0211571, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30840676

RESUMEN

Operant conditioning is a crucial tool in neuroscience research for probing brain function. While molecular, anatomical and even physiological techniques have seen radical increases in throughput, efficiency, and reproducibility in recent years, behavioural tools have somewhat lagged behind. Here we present a fully automated, high-throughput system for self-initiated conditioning of up to 25 group-housed, radio-frequency identification (RFID) tagged mice over periods of several months and >106 trials. We validate this "AutonoMouse" system in a series of olfactory behavioural tasks and show that acquired data is comparable to previous semi-manual approaches. Furthermore, we use AutonoMouse to systematically probe the impact of graded olfactory bulb lesions on olfactory behaviour, demonstrating that while odour discrimination in general is robust to even most extensive disruptions, small olfactory bulb lesions already impair odour detection. Discrimination learning of similar mixtures as well as learning speed are in turn reliably impacted by medium lesion sizes. The modular nature and open-source design of AutonoMouse should allow for similar robust and systematic assessments across neuroscience research areas.


Asunto(s)
Condicionamiento Operante/fisiología , Aprendizaje Discriminativo/fisiología , Bulbo Olfatorio/fisiología , Olfato/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Odorantes , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...